Data Mining: The Textbook by Charu C. Aggarwal, ISBN-13: 978-3319141411
[PDF eBook eTextbook]
- Publisher: Springer; 2015th edition (April 27, 2015)
- Language: English
- 763 pages
- ISBN-10: 9783319141411
- ISBN-13: 978-3319141411
This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories:
- Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems.
- Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data.
Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor.
Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples.
Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T.J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from IIT Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996. He has worked extensively in the field of data mining. He has published more than 250 papers in refereed conferences and journals and authored over 80 patents. He is author or editor of 14 books, including the first comprehensive book on outlier analysis, which is written from a computer science point of view. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM.
He is a recipient of an IBM Corporate Award (2003) for his work on bio-terrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy technology, a recipient of the IBM Outstanding Technical Achievement Award (2009) for his work on data streams, and a recipient of an IBM Research Division Award (2008) for his contributions to System S. He also received the EDBT 2014 Test of Time Award for his work on condensation-based privacy-preserving data mining. He has served as the general co-chair of the IEEE Big Data Conference, 2014. He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering from 2004 to 2008. He is an associate editor of the ACM Transactions on Knowledge Discovery from Data, an action editor of the Data Mining and Knowledge Discovery Journal, editor-in- chief of the ACM SIGKDD Explorations, and an associate editor of the Knowledge and Information Systems Journal. He serves on the advisory board of the Lecture Notes on Social Networks, a publication by Springer. He has served as the vice-president of the SIAM Activity Group on Data Mining, which is responsible for all data mining activities organized by SIAM, including their main data mining conference. He is a fellow of the SIAM, the ACM, and the IEEE for “contributions to knowledge discovery and data mining algorithms.”
What makes us different?
• Instant Download
• Always Competitive Pricing
• 100% Privacy
• FREE Sample Available
• 24-7 LIVE Customer Support